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ABSTRACT:  While there has been substantial progress in modeling and simulation of human agents, practical 
application is limited due to questions concerning the realism of agent behavior.  At Sandia National Laboratories, a 
program of research and development is underway seeking a capability for highly realistic human emulation.  Initially, 
emphasis was placed on computationally representing human Naturalistic Decision Making.  The conceptual approach 
resulting from this work then served as a foundation for development of a framework for the comprehensive 
representation of decision processes.  This framework utilizes a two-tiered architecture in which an underlying 
physiological model serves as the engine for a psychological model.  Knowledge and cognitive processes are 
represented within the psychological model, whereas the physiological model provides the basis for incorporating 
organic factors (e.g., arousal, emotion, etc.).  One output from the model is a simulated EEG signal.  Exercises for 
validation have consisted of replicating studies that used human subjects and comparing actual results with simulated 
cognitive performance and EEG signals from the model.   

Ongoing work has two emphases.  First, there is revision and extension of the model to accommodate practical 
applications.  Second, knowledge representation capabilities are being expanded to incorporate massive volumes of 
knowledge and endow the model with human-like episodic memory.  This latter development is especially important in 
that it creates the potential for customized agents that emulate specific cultures, or individuals.  Current projects focus 
on modeling and simulation of human cognition and behavior.  Specific applications include small unit combat, Insider 
threats and human performance in high consequence systems.  This work also emphasizes the utilization of human 
cognitive models within the context of intelligent systems.  
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1. Introduction 
 

For some time, synthetic humans and other synthetic 
organic entities  have been an important component for 
simulation and gaming systems.  Varying levels of 
sophistication may be observed in the underlying 
cognitive models.  For instance, by increasing the volume 
and breadth of procedural knowledge, larger ranges of 
behavioral response may be attained.  Likewise, through 
incorporation of computational approaches such as AI-
based reasoning, learning, fuzzy logic, neural nets and 

genetic algorithms, increased flexibility and adaptability 
may be achieved.   

It is important to note that a broad range of behavioral 
response and a high level of flexibility and adaptability do 
not equate to realism.  However, with the exception of 
cinematic computer graphics, most current applications 
impose minimal demand for behavioral realism in 
synthetic entities.  For instance, entertainment is the 
primary consideration with most gaming applications.  
Thus, there has been emphasis on visual, audio and other 
features that enhance the user experience.  Similarly, in 



  

  

current military simulation systems, attention has often 
been focused on replicating characteristics of equipment 
so as to provide a high fidelity simulation of actual 
operational experience.  As a result, an emphasis has been 
placed on creating a sensory-motor experience.  

Many simulation applications introduce substantially 
greater demands for behavioral realism in synthetic 
entities than has been typical.  For instance, simulation 
used for assessment of high consequence applications 
(e.g., security, tactical effectiveness, operator response, 
etc.) requires confidence that synthetic entities are 
behaving in a manner comparable to actual humans 
placed in similar circumstances.  For training military, 
law enforcement and other personnel in situations that are 
highly ambiguous and involve personal interactions, 
synthetic entities should exhibit behavioral variability 
consistent with actual populations.  Furthermore, to 
prepare for specific confrontations (e.g., individual, 
culture, group), there is need for synthetic entities 
endowed with a rich personal history that may be 
customized to fit the situation. 

This paper summarizes a program of research and 
development undertaken by Sandia National Laboratories 
for the development of a cognitive architecture that will 
enable highly realistic, customizable synthetic entities.  
This paper discusses three facets of this work: (1) the 
computational representation of human naturalistic 
decision making; (2) incorporation of organic factors 
(e.g., stress, fatigue, emotion, etc.); and (3) endowment of 
synthetic entities with human-like episodic memory. 

2. Reverse Engineering Human Cognition 
   
2.1  General Approach 

In developing a cognitive architecture, an approach has 
been taken that may be characterized as reverse 
engineering.   While at a descriptive level there was a 
desire to support Human Naturalistic Decision Making, 
initially, certain fundamentals were accepted.  For 
example, a heavy emphasis has been placed on oscillating 
systems theory as an explanation for the mechanisms 
underlying semantic and episodic memory (Klimesch, 
1996).  Given these fundamentals, published research 
with human subjects has provided the basis for creating a 
set of design specifications.  These specifications tend to 
be of the form, “if input x is applied, output y should be 
observed.”  In generating specifications, attention has 
been focused on capturing the relationships between 
cognitive performance and electrophysiological 
phenomena.  One output of the cognitive architecture is a 
simulated electroencephalograph signal.  Typical test 

conditions present the emulator a range of stimulus 
conditions with the objective being the design of a 
cognitive architecture that behaves in accordance with 
observations from human subjects.  For example, 
Niedeggen & Rosler (1999) reported increased amplitude 
of response in event-related potentials relative to the 
spreading activation generated by stimulus concepts.  In 
testing the simulation, concepts producing low medium 
and high levels of spreading activation were presented 
and the expected difference in response amplitude 
demonstrated. 

2.2   Simulation of Human Naturalistic Decision 
Making  

Klein and others (Zsambok & Klein, 1997) have provided 
descriptive models of the process by which expert 
decision makers arrive at decisions in realistic settings.  
Currently, the simulation provides a computational 
representation of Level 1 decision making from Klein’s 
Recognition-Primed Decision (RPD) making model 
(Klein, 1997).  Here, within ongoing events, the decision 
maker recognizes a pattern of cues associated with a 
known “situation.”  Once this recognition occurs, there is 
implicit knowledge of the appropriate course of action, as 
well as goals and expectations. 

Figure 1 provides a conceptual depiction of how RPD has 
been represented computationally.  The synthetic entity is 
attributed knowledge of situations.  For the illustrated 
application, the emphasis was Close Quarters Battle, and 
situations consisted of tactics for exterior movement.  
Environmental cues and related knowledge create patterns 
in an associative semantic activation network, and when 
these patterns corresponded to the pattern template 
associated with a known tactic, the situation is recognized 
as one appropriate for that tactic.  In the prototyped 
application, heuristics then provide agents generic 
instructions for implementing the tactic. 

2.3  Incorporation of Organic Factors  

While the initial model depicted in Figure 1 offered a 
computational representation based on RPD, the resulting 
decision maker was an idealized, “perfect decision 
maker.”  By this, it is meant that the behaviors of the 
decision maker and its decision making processes were 
strictly determined by its inputs and knowledge, instead 
of being affected by fear, arousal, stress, etc.  
Furthermore, agents exhibited no individual differences 
attributable to cultural factors or personal experiences.  
Collectively, these factors have been termed “organic 
factors” and a model has been advanced to account for 
their influence on systems (Forsythe & Wenner, 2000).   



  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

Figure 1. Conceptual Framework for implementation of Level 1 Recognition Primed Decision Making in a 
Computer Simulation. 
 

Early in the model’s development, it was realized that a 
purely psychological model, exemplified by Figure 1, 
would be inadequate for representing the influence of 
organic factors on cognitive behavior.  There is enormous 
ambiguity in basic terminology (e.g., stress, arousal) and 
without a representation of underlying mechanisms, the 
scope and predictive capabilities would be severely 
limited.  However, many facets of cognitive behavior 
(e.g., knowledge representation) are well described by 
psychological models (Goldsmith et.al., 1991).  
Consequently, a two-tiered approach was adopted in 
which knowledge is represented using a psychological 
model, while a separate physiology-based model serves as 
the engine that drives this psychological model.  (See 
Figure 2.)  The fact that knowledge is not directly 
represented in the neural (i.e., physiological) model 
distinguishes this design from neural net and 
connectionist approaches, yet facilitates representation of 

the vast quantities of knowledge essential to a realistic 
emulation. 

The mapping of the psychological to the physiological 
model was critical.  Concepts embodied by our earlier 
instantiation of RPD were retained.  This included a 
separate representation of individual situational elements, 
pattern recognition and activation of schema-like 
representation of known situations.  Frame/Content theory 
provided an initial bridge.  This theory asserts that the 
representation of individual elements of content within a 
structural or contextual frame is a basic organizing 
principle of the neural system (MacNeilage, 1998).  
Examples include figure/ground relationships in 
perception, syntax and semantics in linguistics, and 
differential motor specialization for stabilization and 
manipulation.  Generalizing frame/content theory, 
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individual elements of a situation represent content, 
whereas situation schema provide an interpretive frame. 

Further extension involved mapping these ideas to the 
model of memory processes proposed by Wolfgang 
Klimesch and colleagues (Klimesch, 1996).  Two 
phenomena have been described.  First, in the absence of 
intrinsic or extrinsic stimulation, regions associated with 
semantic memory exhibit synchronous activation in the 
high alpha (10-13 Hz) bandwidth.  Once stimulated, 
desynchronization occurs.  It is suggested that semantic 
memory processes involve the activation of numerous 
localized neural assemblies.  (Neural assemblies contain a 
collection of individual neural units with the operation of 
individual units dictated by low-level neural processes, 
e.g., transmitter-receptor interactions, metabolic 
properties, etc.)  These assemblies oscillate in phase with 
pulses from a pacemaker until stimulated, at which time 
activation increases and assemblies begin to oscillate 
independent of the pacemaker.  At this point, there is 
desynchronization.  In contrast, episodic processes exhibit 
a completely different profile.  Specifically, processing 
demands lead to increased synchronization in the theta (4-
7 Hz) bandwidth.  This pattern of activation is consistent 
with oscillation of a single distributed neural assembly.   

These ideas are crucial to the current mapping of 
psychological to physiological processes.  In particular, 
activation associated with individual elements of a 
situation is equated to the activation of numerous 
localized assemblies with oscillations in the 10-13 Hz 
bandwidth.  Simultaneously, there is a separate pattern 
recognition process that monitors activation of assemblies 
associated with individual elements and responds when 
specified patterns of activation occur.  This would be 
synonymous with matching current conditions to a known 
situation schema.  The pattern recognition process is 
associated with a single neural assembly that oscillates in 
the 4-7 Hz bandwidth.   

As illustrated in Figure 2, a semantic activation network is 
used to represent semantic knowledge activated by 
individual elements of a situation.  This network consists 
of nodes for individual concepts, and associative links 
between nodes that differ in their strength of association.  
Each concept in the psychological model is assigned a 
separate neural assembly, and the activation of each 
concept is a function of the activation of the neural 
assembly assigned to it.  In the computational model, the 
update frequency of each individual component (e.g., a 
concept node, situation recognizer, etc.) is the theoretical 
oscillation frequency of its physiological analogue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Framework for Emulator showing psychological and physiocolical levels. 
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Situation recognition was initially represented in the 
psychological model by a template matching process.  
Rows of the template represent known situation schema 
and columns correspond to concepts in the knowledge 
network.  A simplified approach may be utilized whereby 
binary numbers indicate the activation, or lack of 
activation, of individual concepts during a given time 
period.  Recognition occurs incrementally in accordance 
with a race model and when a threshold is exceeded, there 
is activation of the situation schema.  This approach, 
however, is considered overly simplistic and current 
efforts are focused on better delineating the process by 
which humans recognize situations and computationally 
representing those processes (e.g., evidence accumulation 
and neural net approaches are both being explored). 

With this model, employing the reverse engineering 
process described earlier, organic factors may be 
incorporated into the simulation.  For example, arousal 
may be manipulated by adjusting the pulse rate of the 
pacemaker.  In tests wherein arousal was manipulated in 
this manner, the anticipated effects on 
electrophysiological response and cognitive performance 
were observed.   Emotion has been addressed through 
instantiation of the model proposed by Joseph LeDoux 
(1998).  Here, concepts and situations may be assigned 
emotional associations.  Their activation leads to 
activation of emotional processes.  The result is 
heightened activation of the initial concept, and associated 
concepts, and active inhibition of unrelated concepts.  
(See Figure 3).  As illustrated by the examples of arousal 
and emotion, the model offers hooks that also allow for 
the effects of other organic factors (e.g., fatigue, 
metabolic, psychotropic substances, etc.) to be introduced.   

3. Simulation of Episodic Memory 
 
Generally, the knowledge endowed to synthetic entities 
has been restricted to that directly relevant to the 
application domain.  For instance, a synthetic fighter pilot 
knows about air combat and nothing else.  In reality, 
individuals have a collective life experience that may 
exert as strong, and sometimes stronger, influence on 
decisions than domain knowledge.  Furthermore, 
differences in personal experience are a primary factor 
accounting for the individual variability observable in 
human behavior.  For example, individuals may interpret 
similar events differently on the basis of the contexts each 
individual has previously experienced a similar event 
(e.g., exposure to an ethnic group through television 
versus real life).  For these reasons, it is believed that a 
vital element in creating realistic synthetic entities will 
involve the ability to endow agents with a synthetic life 
history.   

Current efforts have focused on developing a capability 
that allows synthetic entities to meaningfully represent 
their experiences.  A conceptual intelligent machine 
example illustrates the direction of this work.  Here, two 
robotic vehicles systematically search a building to locate 
a smoke source.  Based on their sensors, communications 
and data processing capabilities, as they progress through 
the scenario, different concepts in their semantic networks 
are activated (See Figure 4a).  The result is a time series 
of patterns of semantic activation.  This time series may 
be statistically analyzed to identify recurrent schema (e.g., 
progressing down a hallway following a smoke gradient).  
This is illustrated in Figure 4b.  Endowed with knowledge 
of these schema, stories may be constructed that are based 
on the sequence of schema experienced during a given 
event (See Figure 4c).  Given knowledge of these schema, 
subsequent analysis allow identification of recurrent 
sequences of schema (i.e., themes or storylines).   

Preliminary results on this branch of our work are 
presented in (Schoenwald, et. al. 2002), which examines 
the use of computer simulation of a collective of 
embodied agents to generate episodic memory.  In the 
simulated scenario, ground-based robotic vehicles attempt 
to search a building for smoke and place a robot at the 
highest smoke concentration the collective finds.  The 
simulations, done in Sandia’s Umbra embodied agent 
simulation environment (Gottlieb, et. al., 2001, 2002), 
included the behavior, sensing, control, mobility, and 
communication of a seven robot team.  (See Figure 5.)   

As in the conceptual description, the robots’ logical and 
sensor states activate nodes in semantic network (30 
concepts) whose outputs were monitored to generate trace 
data, in this case for 20 five-minute runs.  Two cluster 
analysis methods, K-means and DIANA, were applied to 
randomly sampled activation data for a 15-concept subset 
chosen by a domain non-expert.  Although the concepts 
selected did not include several concepts domain experts 
would have chosen, the K-means analysis produced 
clusters consistent with high-level themes (roles) 
identified by one of the robot programmers.   
Continuation of this work will include improvements to 
activation tracing and selection of concepts, as well as 
using the clusters to enable the robots to express their 
activity at the role level. 

The capabilities described here are an initial step toward 
endowing synthetic entities with a life history.  For 
instance, parallel efforts focus on mechanisms for 
generating unique life histories.  It should be noted that 
these capabilities provide the basis for mental simulation, 
a key ingredient for expanding the model of RPD to levels 
2 and 3 (Klein, 1997).  Furthermore, the episodic 



  

  

representations also provide a basis for synthetic entities 
to learn over the course of simulator runs and even 
develop knowledge based on shared experiences with 
individual trainees.  Consequently, a synthetic entity 
might remind a trainee what happened in a similar 
scenario two months earlier or exhibit differential 
confidence based on the trainees’ recent success or 
failure. 

4. Toward Practical Application 
 
Sections 1 & 2 described a psycho-physiologically 
motivated implementation of the Level 1 RPD model 
applied to decision-making disembodied from the world, 
with perception and action abstracted away.   We now 
consider a direction for integrating our implementation of 
the RPD core into the behavior of embodied agents, 
particularly simulated Computer Generated Forces and 
(real) autonomous robotic systems. 

Recall that RPD is a descriptive model of how people 
determine or update a Course of Action (COA) in the 
context of dynamic situations.  This leads to the question 
of what a COA is in a computational sense. (I.e., is it a 
script? A planning mechanism?)  In an embodied agent, a 
COA is simply some mechanism that produces action.  In 
our view, it is important that such a mechanism may take 
into account the agent’s perception of and model (e.g., 
cognitive map) of the world, its perception of its own 
state, its cognitive state, and that mechanism’s own 
internal state.   Furthermore, in the embodied agent 
context, action must be interpreted generally, so that an 
action can control sensors, alter perceptual processing, 
update cognitive state, or attempt to cause changes to 
physical state through motor actions.  Figure 6 shows a 
way in which the RPD implementation of the previous 
sections might be integrated into an embodied agent.   

In the context of our particular implementation of 
Situation Recognition, Perception (in the general sense, 
which can also be applied to a world model) may cause 
node (concept) stimulation in the semantic activation 
network and read node activations.  Thus, Perception can 
activate cues for situations, and semantic activation may 
play a role in “top-down” influences on Perception.  COA 
mechanisms not only may cause and observe semantic 
activation, but they may inhibit activation.  Thus, if state 
machines (finite, fuzzy finite, hierarchical, etc.) are used 
as COA mechanisms, the states of their finite control may 
be integrated with semantic activation, or at least be 
reflected by it.  (COA mechanisms may also based on 
other approaches, such as ACT-R or SOAR.)  We leave 
open the possibility that situations may be nested and that 
a COA might entail concurrent behaviors or mechanisms.   

Resolving conflicts that might arise can be viewed as a 
part of Level 2 and 3 RPD; alternatively, conflicts might 
be viewed as situations themselves, and mechanisms for 
resolving them, such as applications of rule-based 
cognition, may be viewed as part of an appropriate COA. 

5. Conclusion 
 
This paper has described a theoretical approach and 
concepts for the development of realistic synthetic 
humans.  A limited capability for modeling somewhat 
constrained scenarios is currently available and work now 
focuses on expanding this capability for modeling more 
open-ended dynamic scenarios.  It is acknowledged that 
the level of realism attained may be debated, however it is 
believed the approaches described here offer meaningful 
progress relative to current alternatives.  In closing, it is 
noted that putting aside the debate concerning realism and 
synthetic humans, these same capabilities may be applied 
to intelligent machine applications with equal and perhaps 
more immediate advantages. 
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Figure 3.  Differential Response to Conditions with and without Fear Inducing Stimulus 
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Figure 4a.  Example Time Series of Patterns of Semantic Activation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4b.  Example Derivation of Schema Based on Recurrent Patterns of Semantic Activation 
 
 
1. Entered building 
2. Searched for smoke, found no smoke 
3. Selected path, passage into hallway 
4. Followed path (search smoke) 
5. Detected smoke 
6. Followed path (smoke gradient), reached intersection 
7. Sampled paths, found path with more smoke 
8. Followed path (smoke gradient), reached intersection 
9. Alerted (destination) 
10. Followed path (destination) 
 
Figure 4c.  Story Generated Based on Sequential Ordering of Schema at the Conclusion of Simulation Run. 
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Figure 5.  Detailed simulation (Umbra) of multiple vehicles navigating a building without maps or localization.  
The robot behaviors and sensor suites were modified to place a robot at the maximum smoke level encountered.  
The left view shows a cut-away view of the building.  The right view shows a close-up of vehicles with their IR 
sensing visible. 
 



  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  A simplified diagram showing conceptually how an RPD model can be integrated into a framework for 
embodied agent behavior.  
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